
Warm-Up!

1. We are asked to determine the value of the sum 1 + 2 + 3 +  + 98 + 99. Adding pairs of these 
addends, we notice a pattern. For example, pairing the first and last numbers, we have 1 + 99 = 100. 
Then pairing the second number with the next to last number, we see that 2 + 98 = 100. We will be 
able to do this for a total of 49 pairs of addends, with the addend of 50 left in the middle unpaired. 
That means the sum of the first 99 positive integers is 49(100) + 50 = 4900 + 50 = 4950. 

2. Figure 1 has 1 dot. Figure 2 has 3 dots, which is 2 more that the previous figure. Figure 3 has 
6 dots, which is 3 more than the previous figure. Finally, Figure 4 has 10 dots, which is 4 more than 
the previous figure. Notice the pattern shown in the table below. 
Therefore, Figure 10 has 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 
55 dots. The numbers of dots in each figure form a sequence of 
numbers commonly referred to as the Triangular Numbers. There is 
a formula to determine the sum of the first n positive integers. It is 
1 + 2 + 3 + 4 + + n = n(n + 1)/2. So, in this case, the number of 
dots in Figure 10, which represents the tenth Triangular Number, is 
10(11)/2 = 110/2 = 55 dots. 

3a. Because these are each arithmetic sequences, we know the difference between consecutive 
terms for each sequence remains constant. (In other words, the same amount is added to each term 
to get the next term.) For the first sequence, we have 11 – 5 = 6, so the common difference is 6. The 
terms are 5, 11, 11 + 6 or 17, 17 + 6 or 23, 23 + 6 or 29.

3b.  Again, the common difference is 6, but we must work backwards. __, __, 5 – 6 or –1, 
5, 11. Then __, –1 – 6 or  –7, –1, 5, 11. And finally –7 – 6 or  –13, –7, –1, 5, 11.

3c.  Going from 5 to 11, we must add the common difference to 5 a total of four times. The total 
difference is 6. Dividing this into four equal parts, we see the common difference of the arithmetic 
sequence is 6/4 = 3/2 = 1.5. Therefore, the sequence is 5, 6.5, 8, 9.5, 11.   

4a. One million is 1,000,000. Granted, we’re not supposed to be writing anything, but just looking at 
this, I can see that 1,000,000 = 10002, so the square of 999 (or 9992) would be the largest square 
less than one million.

4b. This means we need the smallest positive three-digit integer that is 1 more than a multiple of 7. 
Let’s build our smallest positive three-digit multiple of 7... it must be of the form 10_. Dividing 10 by 7 
leaves a remainder of 3, and then making the units digit a 5 would make the situation such that 7 now 
evenly divides into 35. So 105 is the smallest positive three-digit multiple of 7 and 106 is the answer 
to the original question. (You may have gone a different route... many of us know 77 is a multiple of 7; 
and if we continue to add 7 or multiples of 7 we can find the number we’re looking for. Adding 21 to 
77 gives us 98, so 99 would give us a remainder of 1, but isn’t a three-digit number; and then adding 
7 more we get 106, so this is the smallest positive three-digit integer that is one more than a multiple 
of 7.)
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FIGURE   DOTS

1   1
2   1 + 2 = 3
3   1 + 2 + 3 = 6
4   1 + 2 + 3 + 4 = 10
⁞ ⁞
n   1 + 2 + 3 + 4 + + n



© 2014 MATHCOUNTS Foundation. All rights reserved. MATHCOUNTS Mini Solution Set

4c. This is similar to the previous question. I know 999 is a multiple of 9, and that’s pretty close to a 
four-digit number. In fact, if we add 5, we get 1004, and we know that 1004 will leave a remainder of 
5 when it’s divided by 9, so this is our answer.  

The Problem is solved in the Minis  video.

Follow-up Problems

5. Since S(19) is the sum of the first 19 positive integers, it follows that S(20) = S(19) + 20. 
Therefore, S(20) − S(19) = 20. 

6. When the dots are connected, triangles are created, as shown. Instead of looking at the line 
segments, let’s look at the number of shaded triangles in each figure. 

    Figure 1        Figure 2		  Figure 3			  Figure 4				   Figure 5

Figure 1 has no triangles. Figures 2, 3, 4 and 5 each have 1, 3, 6 and 10 shaded triangles, 
respectively. The sequence representing the number of shaded triangles in each figure is 
0, 1, 3, 6, 10, ... Recall, that the sequence representing the number of dots in each figure is 1, 3, 6, 
10, 15, ... Notice that these two sequences are the same, except the terms are one-off because the 
first term of the sequence representing  the shaded triangles is 0. It follows, then, that in Figure 10 
there are 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 shaded triangles. Each shaded triangle has a 
perimeter of 3. That means the length of all the segments in Figure 10 is 45 × 3 = 135 units. 

7. The first term in Jenny’s list is 12 = 1. The product of the first two terms in her list must be 22 = 4. 
Therefore, the second term is 4 ÷ 1 = 4. The product of the first three terms must be 32 = 9.  So, the 
third term is 9 ÷ (1 × 4) = 9/4. The product of the first four terms must be 42 = 16. It follows, then, 
that the fourth term is 16 ÷ (1 × 4 × (9/4)) = 16/9. Notice the pattern? The nth term in Jenny’s list 
equals n2/(n − 1)2. So, the last term in Jenny’s list, which is the 12th term, equals 122/112 = 144/121.

8.  We are given a formula for the sum of the first n terms of a sequence and then asked to determine 
the value of a6. The sum of the first six terms is S6 = a1 + a2 + a3 + a4 + a5 + a6 = S5 + a6, so S6 – S5 
= a6. Using the formula we can calculate S5 and S6 we get S5 = 52 + 4 × 5 + 8 = 25 + 20 + 8 = 53 
and S6 = 62 + 4 × 6 + 8 = 36 + 24 + 8 = 68. Substituting these values, we see that a6 = S6 – S5 = 
68 – 53 = 15. 


